Mechanism of transforming growth factor-beta1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells.
نویسندگان
چکیده
Transforming growth factor-beta1 (TGF-beta1), an abundant growth factor in bone matrix, has been shown to be involved in bone formation and fracture healing. The mechanism of action of the osteogenic effect of TGF-beta1 is not clearly understood. In this study, we found that the addition of TGF-beta1 to murine osteoblastic MC3T3-E1 cells induced vascular endothelial growth factor (VEGF) mRNA production. VEGF mRNA levels reached a plateau within 2 h after the addition of TGF-beta1. The induction was superinduced by cycloheximide and blocked by actinomycin D. Ro 31-8220, a protein kinase C inhibitor, abrogated the induction. In addition, curcumin, an inhibitor for transcription factor AP-1, also blocked the induction. Electrophoretic mobility shift assay revealed an enhanced binding of transcription factors AP-1 and NF-kappaB. Transient transfection experiment showed that VEGF promoter activity increased 3.6-fold upon TGF-beta1 stimulation. Immunoblot analysis showed that the amount of secreted VEGF was elevated in the medium 4 h after TGF-beta1 stimulation. Our results therefore suggest that at least part of the osteogenic activity of TGF-beta1 may be attributed to the production of VEGF.
منابع مشابه
Mechanical stress up-regulates RANKL expression via the VEGF autocrine pathway in osteoblastic MC3T3-E1 cells.
Although it has been reported that vascular endothelial growth factor (VEGF) promotes not only angiogenesis but also osteoclast and osteoblast differentiation, few reports exist regarding VEGF/VEGF receptor (VEGFR) signaling in osteoblasts, which regulate osteoclast differentiation and generate VEGF. This study examined the expression of the bone remodeling factor VEGF-A and its receptors, VEGF...
متن کاملMechanisms of fibroblast growth factor-2 modulation of vascular endothelial growth factor expression by osteoblastic cells.
Normal bone growth and repair is dependent on angiogenesis. Fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), and transforming growth factor-beta (TGFbeta) have all been implicated in the related processes of angiogenesis, growth, development, and repair. The purpose of this study was to investigate the relationships between FGF-2 and both VEGF and TGFbeta in nonimm...
متن کاملTransforming growth factor-β1 modulates the expression of vascular endothelial growth factor by osteoblasts.
Angiogenesis is essential to both normal and pathological bone physiology. Vascular endothelial growth factor (VEGF) has been implicated in angiogenesis, whereas transforming growth factor-β1 (TGF-β1) modulates bone differentiation, matrix formation, and cytokine expression. The purpose of this study was to investigate the relationship between TGF-β1 and VEGF expression in osteoblasts and osteo...
متن کاملVascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity.
Prostate cancer frequently metastasizes to bone resulting in the formation of osteoblastic metastases through unknown mechanisms. Vascular endothelial growth factor (VEGF) has been shown recently to promote osteoblast activity. Accordingly, we tested if VEGF contributes to the ability of prostate cancer to induce osteoblast activity. PC-3, LNCaP, and C4-2B prostate cancer cell lines expressed b...
متن کاملHuman Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1497 1 شماره
صفحات -
تاریخ انتشار 2000